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ABSTRACT 

The NASA Lewis Research Center is actively 
involved in the development of expert system technol- 
ogy to assist users in applying parallel processing to 
computational fluid and structural dynamic analysis. 
The goal of this effort is to eliminate the necessity 
for the physical scientist to become a computer scien- 
tist in order to effectively use the computer as a 
research tool. 

g 

A 

Programing and operating software utilities have 
previously been developed to solve svstems of ordinary 
nonlinear differential equations on parallel scalar 
processors. Current efforts are aimed at extending 
these capabilities to systems of partial differential 
equations, that describe the complex behavior of 
fluids and structures within aerospace propulsion 
systems. 
ations in the redesign, in particular, the need for 
algorithms and software utilities that can automati- 
cally identify data flow patterns in the application 
program and partition and allocate calculations to 
the parallel processors. A library-oriented multi- 
processing concept for integrating the hardware and 
software functions is described. 

This paper presents some important consider- 

INTRODUCTION 

Reductions in calculation times through parallel 
processing can be negated by inefficiencies in program 
development and execution. The complexities of data- 
.flow detection, code allocation, data transfer con- 
trol, computation, and computation synchronization, 
complicate the development of efficient parallel pro- 
cessing programs. Code development for parallel pro- 
cessing requires expertise in data-flow analysis and 
in the mechanics of the computing system in order to 
show advantage over serial computation and to justify 
the costs associated with parallel processing. 

the general user who merely wants his program to run 
faster. A better approach is to provide an intelli- 
gent interface between the user and the parallel pro- 
cessing system. Ideally this "expert" software will 
automate program development, control program execu- 
tion, and assist in managing and analyzing results 
through "natural" language instructions from the user. 
This approach allows the user to concentrate on the 
details of his own discipline, resulting in efficient 
and effective use of the parallel processing system. 
An added benefit of this approach i s  that it promotes 
technology transfer by raising the level of man- 
machine communication beyond the current FortranIOOS 
norm. 

It is unrealistic to require this expertise of 

The development of expert software to provide 
engineering-level access to parallel processing 
systems is an on-going effort at NASA Lewis. 
development of f irst-generation software for program- 

The 

minq and operating real-time propulsion simulations 
on parallel processors is documented in Arpasi 1986; 
Arpasi 1985a; Arpasi 1985b; Cole 1985; Cole 1984. 
Some related efforts, sponsored by NASA Lewis are 
described in Makoui and Karplus 1983; Feyock and 
Collins 1986. 
software concepts and designs to produce a highly 
automated environment for constructing and utilizing 
solvers for fluid and structural dynamic analysis and 
for usinq them as elements of large system simulators. 
This will require the development of a knowledge base, 
relational algorithms, and software utilities to per- 
form the following functions: 

(1) Converting a differential equation model into 
a high-level, serial computatidnal model that lends 
itself to parallel processing. 

from the serial statement. 

Current emphasis is on extending these 

(2) Developing a parallel statement of the model 

( 3 )  Generatinq executable load modules and exe- 
cuting them on the multiprocessing facility in such a 
way that they run as fast as possible using a minimum 
of resources. 

(4) Providing extensive library and documentation 
utilities to insure the usefulness of programs and 
results. 

Work has begun on the design and ivplementation of the 
programing and operation utilities (2 and 3 above). 
Results of these efforts will define interface 
requirements for and guide the development of the 
other utilities. 

The following sections present some important 
considerations regarding the development of the expert 
programing and operational software. The importance 
of data-flow analysis to detecting parallelism in the 
computational model is described. Multidimensional 
calculation grids are discussed and a data-flow tech- 
nique called propagation vectoring is described as a 
way of detecting and controlling the propagation of 
calculations over the qrid. Finally, a concept for 
integratinq all of the hardware and software tools 
into a library-oriented multiprocessinq environment 
is presented. 

DATA-FLOW CONSIDERATIONS 

Understandinq the data-flow in complex, multi- 
dimensional simulations is critical to producing an 
efficient parallel processinq program. 
tion, a technique for data-flow identification, propa- 
gation, and packing is discussed. 

of equivalence statements, which will be called "ele- 
ments," bound together through causal relationships 
(each producing one result from any number of argu- 

In this sec- 

We start by defining a "code unit" to be a number 
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ments). 
a code unit 

For example, the following can be considered 

XI( i )=f 1 [ X4( i -1 ) 3 
x2 ( i )=f2[X4( i-1) 1 
X3( i )=f3[ X2( i ) ] 

X4(i)=f4[X2(i)] 

x5( i )=f5[xi ( i ) ,k3( i ) ,X4( i ) ] 

where i represents the current calculation, and i-1 
the prior calculation of its elements (Xl ... X5). As 
shown in Fig. l(a), the order of the calculations is 
determined by the argument-result relationships. That 
is, an element cannot be computed until the elements 
producing its arguments are computed. One must also 
take into account the fact that calculation of a code 
element requires a specific amount of time. This 
time, of course, depends upon the capabilities of the 
computer doing the calculation. In the figure, hypo- 
thetical calculation times are represented by the 
height o f  the unshaded area of each rectangle. 
areas represent a slot of time in which a calculation 
o f  an element may occur without delaying the calcula- 
tion of subsequent elements. Thus the number of data 
flow paths may be minimized by judicious movement and 
combining (packing) of elements without increasing the 
calculation time of the code unit. Then, the resul- 
tant grouping o f  elements (paths) may each be assigned 
to a processor for parallel calculation. As shown in 
Fig. l(a), the calculations for Eq. (1) can be packed 
into two parallel paths. 

is used to describe a multiprocessor dedicated to a 
specific code unit calculation. A dual-processor 
system, dedicated to calculating the two parallel 
paths in the example can be considered a solver of 
the code unit in the ith calculation cycle. The 
solver accepts a value for X4( i-1), computes the 
values 
after the calculation interval (here, the time to 
calculate fp, f4, and f5). 

compute successive cycles as shown in Fig. l(b). 
This approach may be viewed as a do-loop 

Shaded 

For the following discussion, the term "solver" 

Xi(i) ... X5(i) and returns these values 

This solver could be used repetitively to 

For i=l ... 2 do solver, (2) 

assuming that the appropriate data transfers take 
place. The calculation time for two cycles is twice 
the calculation time of a single cycle. 

Figure l(c) shows an alternative two-cycle 
solver. 
are treated as a single code unit. 
paths can be packed into a dual-processor solver as 
shown in Fig. l(c) so as to require less calculation 
time than the repetitive approach (i.e., f2(i+l) 
overlaps fg(i)). It should be noted that this 
approach requires that the entire code unit reside on 
each processor. These exampies demonstrate that 
direct parallelization of a repetitive calculation may 
not result in a minimum-time solution. Indeed, it is 
often necessary to expand loop calculations into a 
large set of equations in order to develop a minimum- 
time solver. 

In this approach the elements for both cycles 
The data-flow 

Once a solver has been developed, it can be 
replicated. These multiple identical solvers may then 

be used to parallelize the repetitive calculation of 
the solver's results (e.q., other do loops). The 
remainder of this section provides a discussion of 
this approach to parallel processing. 
culation is viewed as propagation of the solver over 
a multidimensional calculdtion qrid (the dimension 
corresponding to the arrayness of the solver's vari- 
ables). An approach to identifying this propaqation 
is presented. Finally the use of control statements 
to establish the bounds and boundary values of the 
calculation qrid is discussed. 

Repetitive cal- 

Consider the following example of a three- 
dimensional calculation: 

where i,j,k are the coordinates of a calculation 
qridpoint; X(i,j,k) is the result at the qridooint; 
and F is the functional relationship between that 
result and the results at other qridpoints. Calcula- 
tion and transfer of X(i-l,j,k) enables X(i,j,k) as 
does X(i,j,k-1). The calculation of X(i,j,k) is 
triggered when it has been enabled by each argument. 
The sequencing of gridpoint calculations can be 
defined in terms of the "propagation vectors" [1,0,0] 
and [0,0,1], which result from the roots of the argu- 
ment coordinates: 

i-l=O, j=O,k=O and i=O,j=O,k-l=O. (4) 

Since there are two propagation vectors for E q .  (3), 
each gridpoint requires two enablements to trigger 
its calculation. 
point's coordinates matches the sum of another 
triqgered qridpoint's coordinates and one of the 
propaqation vectors. 

shown in Fig. 2, calculation of points (2,3,3) and 
(3,3,2) trigger calculation of point (3,3,3). The 
calculation of (3,3,3) would occur in the fifth cal- 
culation cycle o f  the solver. Once all gridpoints, 
which can be calculated at a specific time, have been 
identified, and their arguments from past cycle cal- 
culations become available, those gridpoints can be 
allocated to solvers and the new calculations bequn. 
The calculation of the solver (3) will proceed accord- 
ing to the two propagation vectors until all 64 grid- 
points have been calculated. The propagation vectors 
therefore determine the number of gridpoints that can 
be calculated each cycle. For the example, these are: 
4,8,12,16,12,8,4 (see Fig. 2). Therefore if a pro- 
cessor is assigned to each gridpoint which can be cal- 
culated in parallel, 16 processors would be required 
to calculate the 64 gridpoints in the minimum 7 cal- 
culation cycles. 
vectorinq, it may be possible to set up the next cycle 
calculation in parallel with the current calculation 
cycle. 
ble runtime tool for governing the utilization of 
solver resources. 

An enablement occurs when the grid- 

For example, in the 4 by 4 by 4 calculation qrid 

Through proper use of propagation 

Thus propagation vectors can provide a valua- 

Control statements are used within programs, or 
as operatinq system conwnands, to qovern calculation 
of a code unit. 
communication with the programming and operation util- 
ities. The primary control statements are: 

They therefore form the basis for 

DO <cu> ; 

IF <boolean> THEN DO ccul> ELSE DO <cu2> ; 

WHILE <boolean> DO <CUI> ; 

c 
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FOR i=l .. n , j = l  .. m,... DO <cu> ; 

FROM <cu> ; 

, h e r e  <cu>  i s  a code u n i t .  The s tatement  (DO) spe- 
c i f i e s  o n l y  a s i n g l e  c a l c u l a t i o n  of  t h e  code u n i t  and 
t h e r e f o r e  t h e  c a l c u l a t i o n  g r i d  i s  j u s t  a s i n g l e  
g r i d p o i n t .  

The c o n d i t i o n a l  s ta tement  ( I F )  i m p l i e s  t h a t  t h e  
code u n i t s  ( c u l  and cu2)  a r e  da ta - f l ow  independent and 
t h e r e f o r e  may be  computed i n  p a r a l l e l  - as may be  the  
code u n i t  which produces t h e  boolean c o n d i t i o n .  The 
g r i d  aga in  i s  b u t  a s i n g l e  p o i n t  f o r  each code u n i t .  

The WHILE statement  r e s u l t s  i n  a one- 
d imens iona l  c a l c u l a t i o n  q r i d  o f  i n d e f i n i t e  l eng th .  
The code u n i t s  ( c u l ,  and t h e  one computing t h e  boo l -  
ean)  a r e  r e p e t i t i v e l y  c a l c u l a t e d  as l o n g  as t h e  bool -  
ean i s  t r u e .  The code u n i t s  a r e  c a l c u l a t e d  synchron- 
o u s l y  and may be c a l c u l a t e d  i n  p a r a l l e l  as l o n g  as the  
r e s u l t s  o f  t h e  f i n a l  c a l c u l a t i o n  c y c l e  o f  c u l  can  be 
abor ted  . 

The FOR statement  e s t a b l i s h e s  e x p l i c i t  bounds 
f o r  m u l t i d i m e n s i o n a l  g r i d s .  
a t e s  t h e  c a l c u l a t i o n  d e p i c t e d  i n  F ig .  2 i s  

FOR i=l. . 4 ,  j=1.  . 4 ,  k = l .  . 4  DO 

A s ta tement  which gener- 

X( i , j, k)=F[X( i-1, j, k )  ,X( i , j, k - l ) ] .  

The FROM statement  i s  used i n  c o n j u n c t i o n  w i t h  

(5) 

t h e  o t h e r  c o n t r o l  s ta tements t o  p r o v i d e  endpo in t  
(boundary)  va lues.  
beyond t h e  boundar ies o f  t h e  c a l c u l a t i o n  g r i d  a r e  
o f t e n  necessary t o  complete c a l c u l a t i o n s  w i th in  the  
g r i d .  (Ca lcu la t i . on  o f  X ( l , l , l )  r e q u i r e s  X(0,l . l )  
and X(l, l ,O) i n  t h e  above example.) These i n i t i a l  
and boundary c o n d i t i o n s  must be synchronously  t rans -  
f e r r e d  t o  t h e  c a l c u l a t i o n  o f  t h e  code u n i t  each cycle, 
as a f u n c t i o n  o f  t h e  t r i g g e r e d  coo rd ina tes .  They can 
be assumed t o  r e s u l t  f r o m  t h e  c a l c u l a t i o n  of another 
code u n i t .  F o r  example, 

The va lues o f  p o i n t s  immediate ly  

DO c c u l >  FROM <cu2> (6) 

i m p l i e s  t h a t  cu2 f u r n i s h e s  t h e  i n i t i a l  va lues  f o r  
t h e  c a l c u l a t i o n  o f  c u l .  I n  t h i s  case, t h e  code u n i t s  
a r e  s t r o n g l y  l i n k e d  s i n c e  t h e  p ropaga t ion  of c u l  
ove r  t h e  g r i d  determines t h e  p ropaga t ion  o f  
t h e  r e s u l t s  o f  cu2 may be d i r e c t  f u n c t i o n s  o f  the 
g r i d  coo rd ina tes .  

cu2, and 

MULTIPROCESSING ENVIRONMENT 

E x p e r t  s o f t w a r e  f o r  programming and o p e r a t i n g  
p a r a l l e l  p rocesso rs  i s  env i s ioned  as p a r t  o f  a d i s -  
t r i b u t e d ,  coopera t i ve ,  m u l t i p r o c e s s i n g  environment f o r  
s c i e n t i f i c  computing. A p r e l i m i n a r y  concept  f o r  such 
an env i ronment  i s  shown i n  F ig .  3. I t  c o n s i s t s  o f  two  
m a j o r  comput ing systems: The m u l t i p r o c e s s o r  f a c i l i t y  
and t h e  l i b r a r y .  The m u l t i p r o c e s s o r  f a c i l i t y  con ta ins  
m u l t i p l e  p a r a l l e l  processors,  some ded ica ted  t o  the 
s o l u t i o n  of  p a r t i c u l a r  codes (e.g., f l u i d s  s o l v e r  A. 
and s t r u c t u r e s  s o l v e r  B) ,  and o t h e r s  f o r  genera l -  
purpose comput ing (e.g., f o r  use i n  d e s i g n i n g  o the r  
d e d i c a t e d  so l ve rs ,  o r  f o r  i n t e g r a t i n g  these  so l ve rs  
i n t o  1 arge system a n a l y s i s ) .  The 1 i b r a r y  con ta ins  
documentation, predeveloped code, and databases f o r  
r e c a l l  b y  t h e  user. Users m igh t  i n t e r f a c e  t o  the  
m u l t i p r o c e s s o r  th rough  pe rsona l  computers and user- 
d e d i c a t e d  p a r a l l e l  p rocesso rs  c o n t a i n i n g  t h e  afore- 
(mentioned e x p e r t  so f tware  u t i l i t i e s .  The f u n c t i o n s  

o f  s p e c i f i c  u t i l i t i e s  a r e  f u r t h e r  desc r ibed  i n  t h e  
f o l l o w i n g  paragraphs. 

Exper t  Sof tware U t i l i t i e s  

The programming u t i l i t y  i s  used t o  a s s i s t  t h e  
use r  i n  c r e a t i n g  p a r a l l e l  p rocess ing  tasks.  The use r  
s p e c i f i e s  t h e  c a l c u l a t i o n  task ,  w i t h o u t  r e q a r d  f o r  
p a r a l l e l i s m ,  u s i n q  c o n t r o l  and equ iva lence  s t a t e n e n t j  
t o  d e s c r i b e  t h e  c a l c u l a t i o n .  The t a s k  may u t i l i z e  
l i b r a r y  c a l l s  t o  make use o f  e s t a b l i s h e d  a l g o r i t h m s ,  
o r  t o  i n t e g r a t e  any o f  t h e  f a c i l i t y ' s  s o l v e r s  i n t o  %he 
c a l c u l a t i o n .  I t  i s  o o s s i b l e  t h a t  o t h e r  e x p e r t  s o f t -  
ware c o u l d  automate t h e  s e l e c t i o n  o f  a l q o r i t h m s  and 
s o l v e r s  based on  a h i g h e r - l e v e l ,  ( d i f f e r e n t i a l  equd- 
t i o n )  s ta tement  o f  t h e  task .  I t  i s  i m p o r t a n t  t h a t  a 
s t r u c t u r e  be imposed on t a s k  s p e c i f i c a t i o n  t o  i n s u r e  
t h a t  s u f f i c i e n t  i n f o r m a t i o n  be p r o v i d e d  f o r  da ta - f l ow  
ana lys i s ,  and f o r  documentat ion of  t h e  Drocess. I n  
t h e  c u r r e n t  des ign  e f f o r t ,  t h a t  s t r u c t u r e  i s  b e i q g  
based on t h a t  desc r ibed  i n  A rpas i  1955b. w i t h  %he 
a d d i t i o n  o f  d imensional  data-types, h i g h e r - l e v e l  c a l -  
c u l a t i o n  c o n t r o l  s ta tements,  and o t h e r  enhancements. 

The p a r t i t i o n i n g  u t i l i t y  accepts  t h e  s t r u c t u r e d  
d e f i n i t i o n  o f  t h e  t a s k  a lonq  w i t h  a d e s c r i D t i o n  o f  thF 
m u l t i p r o c e s s o r  f a c i l i t y  a v a i l a b l e  f o r  i t s  c a l c u l a t i o n .  
I t  p r o v i d e s  any r e q u i r e d  l i n k s  t o  t h e  l i b r a r y ,  does 
syn tax  and semantic t e s t i n g ,  and o f f e r s  adv i ce  on p r g -  
qram o p t i m i z a t i o n .  Then, u s i n q  p r e v i o u s l y  es tab l i sh - .  
c h a r a c t e r i s t i c s  o f  t h e  m u l t i p r o c e s s o r  f a c i l i t y ,  i t  
b reaks  t h e  h i g h - l e v e l  s ta tements i n t o  b a s i c  opera- 
t i o n s ,  computes t h e i r  c a l c u l a t i o n  t imes  and uses d a t 3 -  
f l o w  r e l a t i o n s h i p s  ( r e s u l t i n q  f rom t h e  k i n d  o f  
a n a l y s i s  desc r ibed  i n  t h e  p r e v i o u s  s e c t i o n )  t o  es tab -  
l i s h  t h e  t a s k  elements. 

The t r a n s l a t i n g  u t i l i t y  c o n v e r t s  t h e  t a s k  e l e -  
ments i n t o  execu tab le  code f o r  t h e  t a r g e t  processors.  
T h i s  code, l i n k a g e  i n f o r m a t i o n ,  arqument t r a n s f e r  
maps, i n f o r m a t i o n  f r o m  t h e  p a r t i t i o n i n g  u t i l i t y ,  t h e  
sou rce  program, and a l l  documentation, i s  sen t  t o  t h e  
l i b r a r y  f o r  r u n t i m e  re fe rence .  A l s o  i n c l u d e d  i n  t h i s  
t a s k  packet  i s  a d e s c r i p t i v e  database t o  e s t a b l i s h  
h i g h - l e v e l  communication between t h e  o p e r a t i o n  u t i l i t y  
and t h e  user .  

The o p e r a t i o n  u t i l i t  assembles t a s k s  i n t o  p a r a l -  
l e l  p rocess ing  jobs.  The'user comnunicates th ro l i gh  a 
s t r u c t u r e  designed t o  s i m p l i f y  j o b  s p e c i f i c a t i o n .  
T y p i c a l l y ,  t h i s  w i l l  i n v o l v e  t h e  use o f  c o n t r o l  s t a t e -  
ments and o p e r a t i o n a l  commands such as those  desc r ibed  
i n  Co le  1984. The p a r a l l e l  p rocess ing  j o b  i s  assem- 
b l e d  f rom t a s k s  c o n t a i n e d  i n  t h e  l i b r a r y ,  o r  f rom 
u s i n g  a c o n t r o l  s ta tement .  The c a l c u l a t i o n  o f  a d e d i -  
ca ted  s o l v e r  i s  t r e a t e d  as a compu ta t i ona l  element. 
A l l  necessary j o b  i n f o r m a t i o n  i s  s u b v i t t e d  t o  t h e  
f a c i l i t y  manager ( F i g .  3 ) .  The o p e r a t i o n  u t i l i t y  pro-  
v i d e s  f o r  i n t e r a c t i v e  communication between t h e  u s e r  
and t h e  m u l t i p r o c e s s o r  f a c i l i t y  manager d u r i n g  j o b  
execut ion.  

The m u l t i p r o c e s s o r  f a c i l i t y  manager (MFM) con- 
t r o l s  .iob c a l c u l a t i o n  based on t h e  c o n t r o l  s ta tements.  
The MFM f u n c t i o n s  a r e  shown i n  F ig .  4. 
t i o n s  a r e  per formed each c a l c u l a t i o n  c y c l e  acco rd ing  
t o  r u l e s  e s t a b l i s h e d  d u r i n g  j o b  f o r m u l a t i o n .  
se tup  f o r  t h e  n e x t  c a l c u l a t i o n  c y c l e  i s  done i n  p a r a l -  
l e l  w i t h  t h e  c a l c u l a t i o n  and t r a n s f e r  of r e s u l t s  f o r  
t h e  c u r r e n t  c a l c u l a t i o n  c y c l e .  T h i s  se tup  i n c l u d e s :  
p ropaga t ion  and c o n t r o l  (en-ablement and t r i g g e r i n g )  
t o  d e f i n e  t h e  c a l c u l a t i o n s  r e q u i r e d  i n  t h e  n e x t  c y c l e ;  
f o l l o w e d  b y  t h e  g e n e r a t i o n  o f  any boundary va lues  
needed, and i n  p a r a l l e l ,  any p a r t i t i o n i n g  and p d c k i i g  

These func-  

The 
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of next cycle calculations which may be required. 
This, in turn, is followed by the development of load 
modules and allocation of these modules to the pro- 
cessors to be used in the next cycle. 

Each control processor in the MFM has a number 
o f  service (e.g., calculation) processors assiqned to 
its domain. Allocation is made from this domain to 
promote parallelism. 
a control processor if it is allocated a control 
statement. Thus job execution proceeds on a tree- 
growth basis. Results are passed down the tree as 
specified by the data transfer maps, until the final 
results reach the facility manager. They are then 
transferred back to the user via the operation 
utility. 

Any service processor may become 

The results, an executable session nistory, and 
other appropriate documentation are sent from the 
operating utility to the library for future reference. 

CONCLUDING REMARKS 

A concept for a library-oriented multiprocessor 
environment for computational fluid and structural 
dynamics analysis has been presented. This concept 
depends on the development of expert software utili- 
ties that will automate the programming and operating 
of parallel processors, eliminating the need for the 
user to "think parallel." The feasibility of such 
utilities has previously been demonstrated for paral- 
lel processing of ordinary differential equations. 
Current efforts are aimed at extending those concepts 
and designs to the more general case of multidimen- 
sional, partial differential equations. O f  course, 
the concepts presented are merely an outline of a 
general approach to developing the proposed 
multiprocessing environment. As specific software 
utilities are designed and tested, a clearer picture 
of the overall environment should emerge leading to 
the development and demonstration of a prototype 

system. 
required by the expert software utilities, particu- 
larly at runtime, may offset any reduction in time 
qained by the parallel processing. Careful attention 
must be qiven to both software and hardware design to 
avoid this. 

It is recoqnized that the overhead time 
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